Competence-based Analysis of Language Models

Adam Davies, Jize Jiang, ChengXiang Zhai

Department of Computer Science, University of Illinois Urbana-Champaign

What properties does LLM use to perform a task?

Causal \rightarrow robust **Spurious** \rightarrow **brittle**

CAUSAL PROBING

- **Train probe** to predict property
- 2. Intervene on probe to modify representation

3. Analyze impact on model behavior

CALM: use causal probing to measure **competence**

- *Change predictions* when modifying *task-causal* properties
- Stays the same when modifying spurious properties

CALM FRAMEWORK

Causal Task Structure

- LLM M
- Task $\mathcal{T} \sim P(\mathcal{X}, \mathcal{Y})$
- Set of properties $\mathbf{Z} = \{Z_i\}$ taking values $\mathbf{z} \in \{z_k\}$ for a given input *x*
 - Decompose $Z = Z_c \cup Z_e$ for *causal* vs 0 *environmental* properties
 - Dependency $M(X|do(Z_i)) \neq M(X)$ is spurious if Ο $Z_i \in \mathbf{Z}_e$

EXPERIMENTS

Dataset

LAMA ConceptNet: 14 *lexical inference tasks* for maskedlanguage models

- *Hypernym prediction* (IsA): "cats are a type of [MASK] that purrs"
- Also includes relations like PartOf, HasProperty, etc.

Competence Approximation Approximate $C_T(M|\mathcal{G}_T)$ via $E = (\mathbf{Z}, \mathcal{G}_T, S)$

RESULTS

- Structural causal model \mathcal{G}_T
 - Nodes $\mathbf{Z} \cup \{\mathcal{Y}\}$ for set of properties $\mathbf{Z} = \{Z_i\}$
 - Edges denote causal dependencies Ο
 - Decompose $Z = Z_c \cup Z_e$ for *causal* (path to \mathcal{Y}) Ο vs *environmental* (spurious, no path)

Measuring Competence

Define *competence* of *M* w.r.t. \mathcal{T} as alignment with $\mathcal{G}_{\mathcal{T}}$

 $\mathcal{C}_{\mathcal{T}}(M|\mathcal{G}_{\mathcal{T}}) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{X}, \boldsymbol{z} \sim \text{val}(\boldsymbol{z})} S(M(\boldsymbol{x}|\text{do}(\boldsymbol{z})), \mathcal{G}_{\mathcal{T}}(\boldsymbol{x}|\text{do}(\boldsymbol{z})))$

- Reformulation of Interchange Intervention Accuracy:
 - IIA uses *interchange interventions*: extract Ο representation of property Z = z from source x_s to patch into target x_t
- CALM uses *causal probing interventions* instead:

- *Z* is the set of relations corresponding to each of the 14 lexical inference tasks
- $\mathcal{G}_{\mathcal{T}}$ is SCM with a single edge (as determined by the task \mathcal{T} ; other relations are \mathbf{Z}_{e})
- *S* is the overlap between top-*k* predictions before and after intervention

Experiments

Implement interventions using **GBIs**

- Probe is MLP over final embedding layer
- Attack probe using FGSM and PGD (constrain collateral damage via ϵ)

Measure average approximated $\mathcal{C}_{\mathcal{T}}(M|\mathcal{G}_{\mathcal{T}})$ of **BERT** and **RoBERTa** on each task

Averaged over 10 experimental runs (randomly reinitialize probes)

BERT (left bars) and RoBERTa (right bars)

- Both models are partially competent across tasks • Always higher than random baseline (0.0714)
- Competence is predictive of relative task performance (Spearman's $\rho = 0.508, p = 0.064$)
- Explains earlier findings re: hypernym prediction
 - Great performance with engineered prompts, but fail under small changes to prompts
 - *Explanation:* intermediate competence means models rely on both task-causal and spurious lexical properties

GRADIENT-BASED INTERVENTIONS

- Operate at *concept-level* 0
- No need to "borrow" representations from other Ο inputs *x_s*
- Can study unseen combinations of **Z** (required Ο for simulating OOD)

Prior work in causal probing has used *INLP*:

- *Nullifies* representation of property
- Assumes *linear representation*
- For our experimental setting, we need *nonlinear counterfactual* interventions
- *Nonlinear* required for *relational* properties
- *Counterfactual* required for measuring *competence*

Gradient-Based Interventions

Use *gradient-based adversarial attacks* against probes *g* to *minimize probe loss* wrt counterfactual target $y' \neq y$ E.g., FGSM: $h' = h + \epsilon \operatorname{sgn}(\nabla_h \mathcal{L}(g, x, y'))$

- *Flexible:* can use any differentiable probe
- *Controllable:* can modulate perturbation magnitude ϵ

PAPER